## The Chitwan ABM

Alex Zvoleff<sup>1\*</sup>, Li An\*

#### **2012 NSF-PIRE Project Meeting** August 6 – 9, 2012



\*San Diego State University; San Diego, USA

<sup>1</sup>azvoleff@mail.sdsu.edu



 Land-use and land-cover and human-decision making are intimately linked

 Micro-level decision-making can lead to broader scale ("emergent") patterns on the landscape



 How does micro-level demographic decision making impact macro-level resource consumption and land use and land cover (LULC)?

• What role do feedbacks play in this relationship?

## Introduction





INTRODUCTION Submodels Results Verification Discussion Conclusion Chitwan Valley Family Study

- Longitudinal survey began in 1996
- Focuses on social context and family formation
- Human survey data
  - Three detailed interviews (1996, 2001, 2008)
  - Household registry (monthly since Feb. 1997)
- Environmental data
  - Flora count (1996, 2000, 2007)
  - Neighborhood mapping (1997, 2000, 2007)

## INTRODUCTION Submodels Results Verification Discussion Conclusion Methods

 Agent-based models (ABM) represent individual "agents" and model their interactions

- ABM allows:
  - Representation of human-decision making
  - Consideration of feedbacks
  - Examination of system dynamics
  - Testing of alternative hypotheses

Introduction SUBMODELS Results Verification Discussion Conclusion



## Submodels



## First-birth Timing

Introduction

• First births after marriage are modeled separately from other births

Results

Verification

Discussion

Conclusion

 In each month following marriage, calculate probability of a live birth in that month based on regression results (based on Ghimire and Hoelter 2007 and Axinn and Ghimire 2010)

• Only live births are modeled

**SUBMODELS** 

Fuelwood

#### First-birth Timing Model (based on Ghimire and Axinn, 2010)

| Variable                                 | Odds Ratio | 2-sided p-value |
|------------------------------------------|------------|-----------------|
| Percent land area under agriculture      | 1.002      | 0.458           |
| Community characteristics                |            |                 |
| Neighborhood area                        | 0.420      | 0.428           |
| Distance to urban center                 | 1.007      | 0.548           |
| Electricity in 1996                      | 1.298      | 0.105           |
| Non-family services within a 15-min walk | 0.996      | 0.619           |
| Controls                                 |            |                 |
| Respondent's parents' characteristics    |            |                 |
| Mother's number of children              | 0.977      | 0.504           |
| Mother's education                       | 0.922      | 0.678           |
| Mother's work                            | 0.930      | 0.686           |
| Father's education                       | 0.874      | 0.324           |
| Father's work                            | 0.721      | 0.021*          |
| Parents' contraceptive use               | 0.968      | 0.824           |
| Respondent's ethnicity                   |            |                 |
| Low Caste Hindu                          | 1.026      | 0.922           |
| Hill Tibeto-burmese                      | 0.539      | 0.003**         |
| Newar                                    | 0.619      | 0.210           |
| Terai Tibeto-burmese                     | 0.958      | 0.816           |

Continued on next slide.

#### First-birth Timing Model (based on Ghimire and Axinn, 2010)

| Variable                             | Odds Ratio | 2-sided p-value |
|--------------------------------------|------------|-----------------|
| Respondent's marital experiences     |            |                 |
| Age at first marriage                | 0.968      | 0.201           |
| Marriage duration                    |            |                 |
| Marriage duration before 1997        | 0.994      | 0.452           |
| Marriage duration during obs. period |            |                 |
| Married for 1–6 months               | 11.300     | <.001***        |
| Married for 7–12 months              | 7.118      | <.001***        |
| Married for 13–18 months             | 5.386      | <.001***        |
| Married for 19–24 months             | 3.156      | <.001***        |
| Married for 25–30 months             | 1.523      | 0.236           |
| Married for 31–36 months             | 2.278      | 0.010*          |
| Married for 37–42 months             | 1.300      | 0.476           |
| Schooling                            |            |                 |
| 4–7 years of schooling               | 1.621      | 0.043*          |
| 8–11 years of schooling              | 2.345      | 0.063.          |
| 12 or more years of schooling        | 3.688      | 0.019*          |
| Intercept                            | 0.028      | <.001***        |

Model continued from previous slide.

## Second and subsequent births

 For all other births, choose the interval until the next child from empirical probability distribution

- Births can occur until:
  - The desired number of children is reached
  - (or) woman reaches *maximum birth age* (45)
  - (or) woman dies/out-migrates



Results

Verification

Conclusion

Discussion

#### August 6, 2012

Introduction

SUBMODELS

## Desired Number of Children



August 6, 2012



## Mortality



Introduction

1. Minimum marriage age is 15

**SUBMODELS** 

 Beginning at minimum marriage age, calculate a probability (p) of marriage for each agent for that month

Results

Verification

Discussion

Conclusion

Draw a random number – if the random number is less than the probability p, add person to 'to be married' list

Note: Marriage timing regression model is based on Yabiku (2006a, 2006b)

Introduction **SUBMODELS** 

**DELS** Results

Verification

Discussion Conclusion

## Marriage Timing Model (based on Yabiku, 2006)

| Variable                                      | Odds Ratio | 2-sided p-value |
|-----------------------------------------------|------------|-----------------|
| Log(Percent Agricultural Land (interpolated)) | 1.138      | 0.064.          |
| Nonfamily organizations (minutes by foot)     |            |                 |
| School                                        | 1.012      | 0.138           |
| Health post                                   | 0.999      | 0.711           |
| Bus stop                                      | 1.005      | 0.282           |
| Market                                        | 0.999      | 0.842           |
| Employer                                      | 1.003      | 0.305           |
| Schooling                                     |            |                 |
| Years schooling completed                     | 0.997      | 0.893           |
| Enrolled in school                            | 0.669      | <.001***        |
| Female                                        | 2.245      | <.001***        |
| Ethnicity                                     |            |                 |
| Lower Caste Hindu                             | 1.014      | 0.942           |
| Newar                                         | 0.786      | 0.229           |
| Hill Tibetoburmese                            | 1.187      | 0.256           |
| Terai Tibetoburmese                           | 0.906      | 0.508           |
| Age                                           |            |                 |
| Age                                           | 2.107      | 0.004 **        |
| Age-squared                                   | 0.986      | 0.018*          |
| Intercept                                     | 0.000      | <.001***        |

Fuelwood

Education

Migration

Divorce

## Spouse choice

- 1. Once 'to be married' list is constructed, loop over list in random order
- 2. Each time through list, choose a person (**psn1**)
- 3. Calculate probability that **psn1** would marry each other person in the list
  - Assign zero probability to anyone from a different ethnic group or from the same sex
  - Calculate probability for all others based on age difference between spouses (using empirical data)
- Choose a spouse (psn2) by sampling from the potential spouses with each potential spouse weighted by their calculated probability of marriage to psn1
- 5. Unpaired spouses marry in-migrants with spouse age chosen using spouse age model

New household establishment (part 1)

SUBMODELS

Introduction

1. Once a couple is formed, decide if couple will form a new household, by drawing a random number and comparing to the *household fission rate* 

Results

Verification

Discussion

Conclusion

- If a new household is **not** formed, move the new couple into the husband's household
- If a new household is formed, draw the size (area in sq. m) of the household plot from empirical probability distribution

New Household Establishment (part 1)

Results

**SUBMODELS** 

Introduction





Verification

Conclusion

Discussion

## New household establishment (part 2)

SUBMODELS

Introduction

 Find a neighborhood with sufficient free land (agricultural or non-agricultural vegetation, in that order) to build new household

Results

Verification

Discussion

Conclusion

- First try husband's parent's neighborhood
- Move outwards by distance from parent's neighborhood until first neighborhood with free land is found
- 3. Assign new household to chosen neighborhood

## Divorce

- If a random number is less than the calculated divorce probability for a person, that person will divorce their spouse
- The woman will either:
  - Return to her parent's household
  - (or) If her parent's household no longer exists, she will establish a new household in a randomly selected neighborhood following the household establishment submodel
- The man will remain in the original household, together with any child agents

# Note: this model is under devlopment – suggestions appreciated. Currently the divorce probability is set to a constant.

## Individual out-migration: Prob. of out-migration

Results

• For each individual older than the *minimum outmigration age*, a probability of migration is calculated for each timestep (following Massey et al. 2010)

Verification

Discussion

Conclusion

- If a random number is less than the calculated migration probability for a person, that person will out-migrate
- For each migrating person:

**SUBMODELS** 

Introduction

- Length of migration is drawn from empirically observed distribution
- A portion of the migrants (determined by 'permanent out migration probability') do not return
- After the duration of each person's migration is complete, they return to their household

Introduction **SUBMODELS** 

Results

Verification Discussion

Conclusion

## Migration Model (based on Massey et al. 2010)

| Variable             | Odds Ratio | 2-sided p-value |
|----------------------|------------|-----------------|
| Enrolled in school   | 0.820      | 0.062.          |
| Years of schooling   | 1.075      | <.001***        |
| Female               | 0.624      | <.001***        |
| Physical capital     |            |                 |
| Market access        | 1.026      | 0.516           |
| Farmland             | 0.930      | 0.528           |
| Age                  |            |                 |
| 15-25                | 2.797      | <.001***        |
| 25-35                | 1.544      | 0.021*          |
| 35-45                | 0.940      | 0.751           |
| 45-55                | 1.050      | 0.807           |
| Ethnicity            |            |                 |
| Low-Caste Hindu      | 1.109      | 0.477           |
| Hill Tibeto-Burmese  | 1.222      | 0.083.          |
| Newar                | 0.854      | 0.339           |
| Terai Tibeto-Burmese | 0.617      | <.001***        |
| Duration             |            |                 |
| Month                | 0.568      | <.001***        |
| Month squared        | 1.123      | 0.050.          |
| Intercept            | 0.007      | <.001***        |

Fuelwood

Education

MIGRATION

Divorce

Marriage

Fertility Mortality



## Household-level In/Out migration

SUBMODELS

Introduction

 Household-level in and out-migration can be allowed by specifying a probability of household out-migration and/or a probability of household in-migration

Verification

Discussion

Conclusion

Results

- Households that out-migrate leave the model permanently, and their land is returned to agriculture
- Households that in-migrate randomly locate in a neighborhood with available land, following the household establishment model

Introduction

- EDUCATION Fuelwood Migration Divorce Marriage Fertility Mortality
- At age 6, calculate child's final schooling level

Results

Verification

Discussion

Conclusion

- 2. Increment education level each timestep until:
  - Person dies or outmigrates

**SUBMODELS** 

- (or) Final schooling level is reached

## Education Model (ordinal logistic regression)

|                                              | Odds  | 2-sided     |
|----------------------------------------------|-------|-------------|
| Variable                                     | Ratio | p-value     |
| Neighborhood Level                           |       |             |
| Avg. years non-family services (15 min. ft.) | 1.050 | < 0.001 *** |
| Individual Level                             |       |             |
| Female                                       | 0.124 | < 0.001 *** |
| Ethnicity                                    |       |             |
| Low-Caste Hindu                              | 0.133 | < 0.001 *** |
| Hill Tibeto-Burmese                          | 0.227 | < 0.001 *** |
| Newar                                        | 0.983 | 0.954       |
| Terai Tibeto-Burmese                         | 0.083 | < 0.001 *** |
| Intercepts                                   |       |             |
| Years schooling greater than 0, less than 4  | 7.991 | < 0.001 *** |
| Years schooling greater than 4, less than 8  | 3.890 | < 0.001 *** |
| Years schooling greater than 8, less than 11 | 0.987 | 0.944       |
| Years schooling greater than 11              | 0.186 | < 0.001 *** |

n = 715, pseudo  $R^2 = .435$ 

Fuelwood

**EDUCATION** 

Migration

Divorce

## Fuelwood Usage Probability

- Household-level fuelwood usage is modeled in two parts:
  - 1. Probability of fuelwood usage
  - 2. Quantity of fuelwood usage
- The predicted quantity of fuelwood usage is scaled by the probability of fuelwood usage
- This is consistent with Wolong ABM, and fact that not all households use fuelwood (though most do)

## Probability of Fuelwood Usage

|                               | Odds  | 2-sided   |
|-------------------------------|-------|-----------|
| Variable                      | Ratio | p-value   |
| Neighborhood Level Covariates |       |           |
| Electricity Available         | 0.272 | 0.102     |
| Distance to Narayanghat       | 1.100 | 0.005**   |
| Closest forest is CNP         | 0.621 | 0.274     |
| Household Level Covariates    |       |           |
| Household size                | 1.394 | < .001*** |
| Mean gender (1 = female)      | 2.683 | 0.029*    |
| Ethnicity                     |       |           |
| Low-Caste Hindu               | 2.994 | 0.015*    |
| Hill Tibeto-Burmese           | 0.996 | 0.989     |
| Newar                         | 0.476 | 0.012*    |
| Terai Tibeto-Burmese          | 2.712 | 0.002**   |
| Intercept                     | 2.814 | 0.240     |

n = 2125, Log likelihood = -464.3, Deviance = 928.6

FUELWOOD

Education

Migration

Divorce

Marriage

Fertility Mortality

## Fuelwood Usage Quantity

#### Dependent variable: dry kg firewood / (person \* day)

| Variable                      | Regression<br>Coefficient | 2-sided<br>p-value |
|-------------------------------|---------------------------|--------------------|
| Intercept                     | 1.816                     | <.001***           |
| Mean household size           | -0.408                    | .087 ·             |
| Mean household size (squared) | 0.034                     | .191               |
| Upper Caste Hindu             | -0.051                    | .655               |
| Own any non-wood stove        | -0.255                    | .044 *             |

Adjusted R<sup>2</sup>: .22, n=37

Introduction SUBMODELS Results Verification Discussion Conclusion

## Fuelwood Usage Quantity





Introduction Submodels **RESULTS** Verification Discussion Conclusion



## Scenarios

- We will explore several sets of scenarios exploring the impact of varying key variables on population, fuelwood consumption, and LULC
  - Household fission rate
  - Out migration rate
  - Desired number of children

Results – Household Fission Scenario

Submodels

Introduction

RESULTS

Verification

Conclusion

Discussion


Results – Household Fission Scenario

Submodels

Introduction

RESULTS

Verification

Discussion

Conclusion



Results – Household Fission Scenario

Submodels

Introduction

RESULTS

Verification

Discussion

Conclusion



## Results – Varying Permanent Out-migration



Results – Varying Permanent Out-migration

Submodels

Introduction

RESULTS

Verification

Discussion

Conclusion



Results – Varying Permanent Out-migration

RESULTS

Verification

Discussion

Conclusion

Submodels

Introduction



Submodels

Introduction

RESULTS

Verification

Discussion

Conclusion



Submodels

Introduction

RESULTS

Verification

Conclusion

Discussion



Submodels

Introduction

RESULTS

Verification

Discussion

Conclusion



## Where is LULC occurring?



Introduction Submodels Results **VERIFICATION** Discussion Conclusion

# **Verification and Validation**

## Verification and Validation

- 1. Progress model building and debugging
- 2. Uncertainty testing (extreme test, and extreme combination test)
- 3. Empirical validation—comparing model output data to empirical data
- 4. Sensitivity analysis—examining how model outcomes vary with a small change in key parameters, and
- 5. Experience or expert opinion

(from An et al. 2005)

Simplified First Birth Model (for verification)

Results

Submodels

VERIFICATION

Discussion

Conclusion



Introduction

Introduction Submodels Results VERIFICATION Discussion Conclusion

### Sensitivity Analysis – Example Household Fission Rate



(as expected)

Ime

Introduction Submodels Results VERIFICATION Discussion Conclusion

### Sensitivity Analysis – Example Household Fission Rate



Sensitivity Analysis – Example Household Fission Rate

Results

VERIFICATION

Discussion

Conclusion



Introduction

Submodels

Introduction Submodels Results VERIFICATION Discussion Conclusion

### Sensitivity Analysis – Example Household Fission Rate



## Parameterization Dataset



## Simulated vs. Observed – Deaths

Submodels

Introduction

Results

VERIFICATION

Conclusion

Discussion



## Simulated vs. Observed – Births

Submodels

Results

VERIFICATION

Conclusion

Discussion

Introduction



## Simulated vs. Observed – Marriages

Submodels

Introduction

Results

VERIFICATION

Discussion

Conclusion



Introduction Submodels Results VERIFICATION Discussion Conclusion Simulated vs. Observed – Number of Households





- The Chitwan ABM tends towards a higher degree of demographic detail than other comparable ABMs
  - This enables controlling for many covariates, and can 'drop-in' existing regression models
  - But: can complicate interpretation of results
- Step-by-step approach can untangle complicated reciprocal relationships

## Discussion – Key Findings

- As in Wolong, household size is key to resource consumption
  - But: smaller households in Chitwan are also more likely to transition away from fuelwood
  - Out-migration may be as important as fission rate
- Though household size is main driver of consumption in Chitwan, consumption of downed wood is difficult to tie directly to CNP habitat
- Though areas bordering the CNP are currently primarily agricultural, they will soon be more densely populated

- Out-migration and household size are key determinants of consumption patterns and LULC change
- Areas bordering the national park are likely to transition away from dense agriculture in near future
- Future areas of work:
  - Directly explore and model human-wildlife interactions along park perimeter, taking into account spatial patterns of growth
  - Model spatial impact of feedbacks between LULC and demography (scheduled for submission in the fall)

## Acknowledgements

### With thanks to:

- Dr. William Axinn, UM
- Dr. Jianguo Liu, MSU
- Dr. Lisa Pearce, UNC-Chapel Hill
- Dr. Scott Yabiku, ASU
- Dr. Dirgha Ghimire, UM
- Dr. Prem Bhandari, UM
- Dr. David López-Carr, UCSB
- Binoj Shrestha
- Krishna Shrestha
- ISER-Nepal
- Gabe Sady, SDSU
- Milo Vejraska, SDSU
- Sarah Wandersee, SDSU

### With support from:



NSF Partnerships for International Research and Education (NSF-PIRE) Grant OISE 0729709





### **Built with:**





### References

#### Chitwan Valley Family study (CVFS):

• Axinn, W. G. et al. 2007. *Chitwan Valley Family Study*. University of Michigan, Population Studies Center and Survey Research Center.

#### ABM:

- An, L., M. A. Linderman, J. Qi, A. Shortridge, et al. 2005. Exploring complexity in a human environment system: An agent-based spatial model for multidisciplinary and multiscale integration. *Annals of the Association of American Geographers* 95 (1):54–79.
- An, L., G. He, Z. Liang, and J. Liu. 2006. Impacts of demographic and socioeconomic factors on spatio-temporal dynamics of panda habitat. *Biodiversity and Conservation* 15 (8):2343–2363. (last accessed 15 May 2010).
- Grimm, V. et al. 2006. A standard protocol for describing individual-based and agent-based models. *Ecological Modelling* 198 (1–2):115–126.
- ———. 2010. The ODD protocol: A review and first update. *Ecological Modelling* 221 (23):2760–2768. (last accessed 27 April 2012).

#### First birth timing:

- Ghimire, D. J., and W. G. Axinn. 2010. Community context, land use, and first birth. *Rural Sociology* 75 (3):478–513.
- Ghimire, D. J., and L. F. Hoelter. 2007. Land use and first birth timing in an agricultural setting. *Population & Environment* 28:289–320.

#### Marriage timing:

- Yabiku, S. T. 2006a. Land use and marriage timing in Nepal. *Population & Environment* 27 (5):445–461.
- — — . 2006b. Neighbors and neighborhoods: effects on marriage timing. *Population Research and Policy Review* 25 (4):305–327.

#### Migration:

• Massey, D. S., W. G. Axinn, and D. J. Ghimire. 2010. Environmental change and out-migration: evidence from Nepal. *Population* and Environment.

#### Fuelwood usage:

- Macht, C., W. G. Axinn, and D. J. Ghimire. 2007. *Household energy consumption: community context and the fuelwood transition*. Population Studies Center.
- 2009 and 2011 field surveys (Zvoleff).

ChitwanABM is free and open-source: http://rohan.sdsu.edu/~zvoleff/ChitwanABM.php PyABM is an free and open-source ABM toolkit for Python: http://rohan.sdsu.edu/~zvoleff/PyABM.php

### Thank you. Questions?

azvoleff@mail.sdsu.edu http://rohan.sdsu.edu/~zvoleff/ End of show.

Submodels

Introduction

RESULTS

Verification

Conclusion

Discussion



#### **EXTRA SLIDES**

## Land-use and land-cover change: 1996-2006

| Class            | 1996             | 2001             | 2006           | 2006-1996 |
|------------------|------------------|------------------|----------------|-----------|
| Agricultural     | 879.9            | 875.6            | 854.2          | -25.7     |
| Vegetation       | (80.0%)          | (79.4%)          | (77.6%)        | (-2.4%)   |
| Non-agricultural | 50.2             | 35.3             | 54.4           | +3.2      |
| Vegetation       | (4.6%)           | (3.2%)           | (4.9%)         | (+.03%)   |
| Private          | 82.3             | 88.4             | 94.4           | +12.1     |
| Buildings        | (7.5%)           | (8.0%)           | (8.6%)         | (+1.1%)   |
| Public Buildings | 59.2             | 64.3             | 66.9           | +7.7      |
|                  | (5.4%)           | (5.8%)           | (6.1%)         | (+.07%)   |
| Other            | 28.4             | 39.5             | 31.2           | +2.8      |
|                  | (2.6%)           | (3.6%)           | (2.8%)         | (+.02%)   |
| Total:           | 1100.1<br>(100%) | 1103.1<br>(100%) | 1101<br>(100%) |           |

#### **EXTRA SLIDES**

## Why do you cook with firewood?


### Why do you cook with ....?



## What portion of the firewood you collect is live?



# Simplified Marriage Timing Model (for verification)



### Ordinal Logistic Regression (Proportional Odds Model)

Ordinal logistic model, for a response variable equal to 0,1,2,...,k, is:  $\Pr[Y \ge j | X] = \frac{1}{1 + e^{-(\alpha_j + X\beta)}}$ where j=1,2,...,k. (Harell, 2001)

For example, in our case, for education:

$$Pr[Y = 1|X] = 1 - Pr[Y \ge 2|X]$$

$$Pr[Y = 2|X] = 1 - Pr[Y = 1|X] - Pr[Y \ge 3|X]$$

$$Pr[Y = 3|X] = 1 - Pr[Y = 1|X] - Pr[Y = 2|X] - Pr[Y \ge 4|X]$$

$$Pr[Y = 4|X] = 1 - Pr[Y = 1|X] - Pr[Y = 2|X] - Pr[Y = 3|X]$$

Harrell, F. E. 2001. *Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis.* New York: Springer.

August 6, 2012